How do you find the product of #(8r-1)(r-6)#?

1 Answer
Aug 13, 2017

Answer:

#(8r-1)(r-6) = 8r^2-49r+6#

Explanation:

If you find it helpful, you can use the FOIL mnemonic to remember all the combinations of terms to multiply:

#(8r-1)(r-6) = overbrace((8r)(r))^"First"+overbrace((8r)(-6))^"Outside"+overbrace((-1)(r))^"Inside"+overbrace((-1)(-6))^"Last"#

#color(white)((8r-1)(r-6)) = 8r^2-48r-r+6#

#color(white)((8r-1)(r-6)) = 8r^2-49r+6#