# How do you find the product of (8x^2 + 6y + 8) (y + 6) ?

Feb 27, 2017

See the entire solution process below:

#### Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

$\left(\textcolor{red}{8 {x}^{2}} + \textcolor{red}{6 y} + \textcolor{red}{8}\right) \left(\textcolor{b l u e}{y} + \textcolor{b l u e}{6}\right)$ becomes:

$\left(\textcolor{red}{8 {x}^{2}} \times \textcolor{b l u e}{y}\right) + \left(\textcolor{red}{8 {x}^{2}} \times \textcolor{b l u e}{6}\right) + \left(\textcolor{red}{6 y} \times \textcolor{b l u e}{y}\right) + \left(\textcolor{red}{6 y} \times \textcolor{b l u e}{6}\right) + \left(\textcolor{red}{8} \times \textcolor{b l u e}{y}\right) + \left(\textcolor{red}{8} \times \textcolor{b l u e}{6}\right)$

$8 {x}^{2} y + 48 {x}^{2} + 6 {y}^{2} + 36 y + 8 y + 48$

We can now combine like terms:

$8 {x}^{2} y + 48 {x}^{2} + 6 {y}^{2} + \left(36 + 8\right) y + 48$

$8 {x}^{2} y + 48 {x}^{2} + 6 {y}^{2} + 44 y + 48$