# How do you find the product of (n-4)(n-6)?

Jul 18, 2016

The product is ${n}^{2} - 10 n + 24$

#### Explanation: In order to multiply binomials we use the acronym FOIL

F - Firsts - Multiply the first terms
O - Outers - Multiply the outer terms
I - Inners - Multiply the Inner terms
L - Lasts - Multiply the Last terms

$\left(n\right) \left(n\right) + \left(n\right) \left(- 6\right) + \left(- 4\right) \left(n\right) + \left(- 4\right) \left(- 6\right)$

${n}^{2} - 6 n - 4 n + 24$

${n}^{2} - 10 n + 24$

Jul 18, 2016

${n}^{2} - 10 n + 24$

#### Explanation:

Given:$\text{ } \textcolor{b l u e}{\left(n - 4\right)} \textcolor{b r o w n}{\left(n - 6\right)}$

Everything inside the brown bracket is multiplied by everything inside the blue bracket.

The 'minus' follows the blue 4

$\textcolor{b r o w n}{\textcolor{b l u e}{n} \left(n - 6\right) \textcolor{b l u e}{- 4} \left(n - 6\right)}$

${n}^{2} - 6 n \textcolor{w h i t e}{\ldots} - \textcolor{w h i t e}{\ldots} 4 n + 24$

${n}^{2} - 10 n + 24$