How do you find the product of #(x-y)(2x-y)#?

1 Answer
Aug 8, 2017

#2x^2 - 3xy + y^2#

Explanation:

Given: #(x-y)(2x-y)#

To multiply use FOIL and distribute #(a + b)(c + d) = ac + ad + bc + bd)#:

#(x-y)(2x-y) = 2x x -xy -2xy + yy#

Also remember that #x * x = x^1 * x^1 = x^(1+1) = x^2#

#2x x -xy -2xy +(- y)(-y) = 2x^2 - 3xy + y^2#

So, #(x-y)(2x-y) = 2x^2 - 3xy + y^2#