How do you find the quotient of #(a^3+4a^2-18a)diva#?

1 Answer
Dec 24, 2016

Answer:

#a^2+4a-18#

Explanation:

Method 1:

Here #(a^3+4a^2-18a)÷a#

#=(a^3+4a^2-18a)/a#

#=a^3/a+(4a^2)/a-(18a)/a rarr# Split the fraction.

#=a^(3-1)+4a^2-1-18a^(1-1) rarr#Apply Quotient Law of Indices

#=a^2+4a-18#

Method 2:

#(a^3+4a^2-18a)÷a#

#=(a(a^2+4a-18))/a rarr# Take #a# common in dividend

#=cancel(a)(a^2+4a-18)/cancel(a) rarr# cancel #a#

#=a^2+4a-18#