How do you find the second derivative of #y=Asin(Bx)#?
1 Answer
#(d^2y)/dx^2 = -AB^2sin(Bx)#
Explanation:
We use
#d/dx sin(Kx) = Kcos(Kx)# and#d/dx cos(Kx) = -Ksin(Kx)#
Differentiating:
#y = Asin(Bx)#
once gives us:
#dy/dx = A(Bcos(Bx))#
#\ \ \ \ \ = ABcos(Bx)#
Differentiating again we get:
#(d^2y)/dx^2 = AB(-Bsin(Bx))#
# \ \ \ \ \ \ \ = -AB^2sin(Bx)#