How do you find the solution to #tan^2theta-5tantheta+6=0# if #0<=theta<2pi#?

1 Answer
Dec 21, 2016

#63^@43. 71^@56', 243^@43, 251^@56#

Explanation:

Solve this quadratic equation for tan t by the improved quadratic formula (Socratic Search):
#tan^2 t - 5tan t + 6 = 0#
#D = d^2 = b^2 - 4ac = 25 - 24 = 1# --> #d = +- 1#
There are 2 real roots:
#tan t = -b/(2a) +- d/(2a) = 5/2 +- 1/2#
#tan t = 6/2 = 3# and #tan t = 4/2 = 2#.
Use calculator and unit circle -->
a. tan t = 3 --> arc #t = 71^@56# and arc #t = 71.56 + 180 = 251^56#
b. tan t = 2 --> arc #t = 63^@43#, and #t = 180 + 63.43 = 243^@43#