The formula for calculating the distance between two points is:
#d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)#
Substituting the values from the points in the problem and solveing for #a# gives:
#sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + (color(red)(4) - color(blue)(-5))^2)#
#sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + (color(red)(4) + color(blue)(5))^2)#
#sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + 9^2)#
#sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + 81)#
#(sqrt(85))^2 = (sqrt((color(red)(a) - color(blue)(8))^2 + 81))^2#
#85 = (color(red)(a) - color(blue)(8))^2 + 81#
#85 = a^2 - 16a + 64 + 81#
#85 - color(red)(85) = a^2 - 16a + 64 + 81 - color(red)(85)#
#0 = a^2 - 16a + 60#
#a^2 - 16a + 60 = 0#
#(a - 10)(a - 6) = 0#
Solution 1:
#a - 10 = 0#
#a - 10 + color(red)(10) = 0 + color(red)(10)#
#a - 0 = 10#
#a = 10#
Solution 2:
#a - 6 = 0#
#a - 6 + color(red)(6) = 0 + color(red)(6)#
#a - 0 = 6#
#a = 6#
#a# can be either #6# or #10#