How do you find the volume of the solid #y=4-x^2# revolved about the x-axis?
1 Answer
Use the disc method. The volume is
Explanation:
First, set
#0=4-x^2#
#x^2=4#
#x in {-2,2}#
So our bounds are
Next, use the disc method to find the volume (
#int_-2^2piy^2 dx = piint_-2^2(4-x^2)^2dx#
# = piint_-2^2(16-8x^2+x^4)dx#
#= pi [16x-8/3x^3+x^5/5]_-2^2#
#= pi (32-64/3+32/5)-pi(-32+64/3-32/5)#
#=512/15pi#
#=107.233#
Final Answer