How do you find the x and y intercepts of #-6x+8y=-36#?

1 Answer
Apr 4, 2017

See the entire solution process below:

Explanation:

To find the y-intercept, set #x# to #0# and solve for #y#:

#(-6 xx 0) + 8y = -36#

#0 + 8y = -36#

#8y = -36#

#(8y)/color(red)(8) = -36/color(red)(8)#

#(color(red)(cancel(color(black)(8)))y)/cancel(color(red)(8)) = (4 xx -9)/color(red)(4 xx 2)#

#y = (color(red)(cancel(color(black)(4))) xx -9)/color(red)(color(black)(cancel(color(red)(4))) xx 2)#

#y = -9/2#

The y-intercept is #-9/2# or #(0, -9/2)#

To find the x-intercept, set #y# to #0# and solve for #x#:

#-6x + (8 xx 0) = -36#

#-6x + 0 = -36#

#-6x = -36#

#(-6x)/color(red)(-6) = (-36)/color(red)(-6)#

#(color(red)(cancel(color(black)(-6)))x)/cancel(color(red)(-6)) = 6#

#x = 6#

The x-intercept is #6# or #(6, 0)#