How do you find the y intercept, axis of symmetry and the vertex to graph the function #f(x)=-0.25x^2+5x#?

1 Answer
Feb 19, 2017

Vertex#->(x,y)=(10,25)#
#y_("intercept")->(x,y)=(0,0)#
#x_("intercept") = (x,y)=(0,0) and (20,0)#
Axis of symmetry #->x_("vertex")=10#

Explanation:

As the coefficient of #x^2# is negative the graph is of format #nn#
so we have a maximum.

#color(blue)("Determine the vertex")#

Set as #y=-0.25x^2+5x#

Write as:#" "y=-0.25(x^2-20x)#

#x_("vertex")=(-1/2)xx-20 = +10#

By substitution:#" "y_("vertex")=-0.25(10)^2+5(10) = -25+50=+25#

Vertex#->(x,y)=(10,25)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y-intercept")#

Compare to the standard form #y=ax^2+bx+c#

In the given function there is no value given for #c# so we must have: # c=0#.

So: #y_("intercept")->(x,y)=(0,0)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the x-intercept")#

If #y_("intercept")=(0,0)# then this also equals one of the x-intercepts.

Set #y=0=-0.25x^2+5x#

#=>0=x(-0.25x+5)#

The other x-intercept is at:

#0.25x=5" "->" "x=5/0.25=20#

#x_("intercept") = 0 and 20#