# How do you find the zeros of #f(x)=5x^2-25x+30#?

##### 2 Answers

#### Answer:

See a solution process below:

#### Explanation:

We can factor this function as:

To find the zeros we can solve each term on the right side of the function for

**Solution 1:**

**Solution 2:**

**The Solutions Are:**

#### Answer:

#### Explanation:

#"to calculate the zeros set "f(x)=0#

#rArr5x^2-25x+30=0larrcolor(blue)"factorise to solve"#

#rArr5(x^2-5x+6)=0#

#"the factors of + 6 which sum to - 5 are -2 and - 3"#

#rArr5(x-2)(x-3)=0#

#"equate each factor to zero and solve for x"#

#x-2=0rArrx=2#

#x-3=0rArrx=3#

#"the zeros are "x=2,x=3#

graph{(y-x^2+5x-6)((x-2)^2+y^2-0.07)((x-3)^2+y^2-0.07)=0 [-10, 10, -5, 5]}