How do you find two unit vectors orthogonal to A=(1, 3, 0) B =(2, 0, 5)?

1 Answer
Nov 15, 2016

Please read the explanation.

Explanation:

Begin by computing the cross product. I use a determinant:

#barA xx barB = | (hati, hatj, hatk), (1, 3, 0), (2,0, 5) |#

#barA xx barB = hati|(3, 0),(0,5)| + hatj|(0,1),(5,2)| + hatk|(1,3),(2,0)|#

#barA xx barB = 15hati - 5hatj -6hatk#

Let #barC = 15hati - 5hatj -6hatk#

The unit vector, #hatC = barC/|barC|#

#|barC| = sqrt(15^2 + (-5^2) + (-6)^2)#

#|barC| = sqrt(286)#

#hatC = 15/sqrt(286)hati - 5/sqrt(286)hatj -6/sqrt(286)hatk#

The only other vector that can be orthogonal to #barA and barB# is:

#barB xx barA#

Because #barA xx barB = -(barB xx barA)#, the only other unit vector orthogonal to #barA and barB# is:

#-hatC = -15/sqrt(286)hati + 5/sqrt(286)hatj +6/sqrt(286)hatk#