# How do you foil (x-8)(x-4)?

Aug 10, 2015

Sum (product of First terms, product of Outside terms, product of Inside terms, and product of Last terms) to get
$\textcolor{w h i t e}{\text{XXXX}}$${x}^{2} - 12 x + 32$

#### Explanation:

Evaluating the product of two binomials using FOIL:

Sum
$\textcolor{w h i t e}{\text{XXXX}}$product of First terms
$\textcolor{w h i t e}{\text{XXXX}}$product of Outside terms
$\textcolor{w h i t e}{\text{XXXX}}$product of Inside terms
$\textcolor{w h i t e}{\text{XXXX}}$product of Last terms

For $\left(x - 8\right) \left(x - 4\right)$
$\textcolor{w h i t e}{\text{XXXX}}$First terms: $x , x$$\textcolor{w h i t e}{\text{XXXXXXX}}$Product $= {x}^{2}$
$\textcolor{w h i t e}{\text{XXXX}}$Outside terms: $x , - 4$$\textcolor{w h i t e}{\text{XXX}}$Product $= - 4 x$
$\textcolor{w h i t e}{\text{XXXX}}$Inside terms: $- 8 , x$$\textcolor{w h i t e}{\text{XXXXX}}$Product $= - 8 \times$
$\textcolor{w h i t e}{\text{XXXX}}$Last terms: $- 8 , - 4$$\textcolor{w h i t e}{\text{XXXXX}}$Product $= + 32$

Sum
$\textcolor{w h i t e}{\text{XXXX}}$$= {x}^{2} - 4 x - 8 x + 32$

Combining terms with same exponent of $x$
$\textcolor{w h i t e}{\text{XXXX}}$$= {x}^{2} - 12 x + 32$