How do you graph the parabola #y+4=1/8(x+3)^2# using vertex, intercepts and additional points?

1 Answer
Aug 27, 2017

Note: This is a very long answer.

Vertex: #(-3,-4)#

X-intercepts: #(4sqrt2-3,0),##(-4sqrt2-3,0)#

Approximate x-intercepts: #(-8.66,0),##(2.66,0)#

Y-intercept: #(0,-23/8)#

Approximate y-intercept: #(0,-2.88)#

Refer to the explanation for the process.

Explanation:

Given:

#y+4=1/8(x+3)^2#

Subtract #4# from both sides to change the equation into vertex form.

#y=1/8(x+3)^2-4#

The formula for the vertex form is:

#y=a(x-h)^2+k#,

where:

#a=1/8#, #h=-3#, and #k=-4#

Vertex: the minimum or maximum point of the parabola

The vertex is #(h,k)#.

Therefore the vertex for the given equation is #(-3,-4)#.

Since #a

X-Intercepts: values of #x# when #y=0#

Substitute #0# for #y#.

#0=1/8(x+3)^2-4#

Simplify.

#0=((x+3)^2)/8-4#

Add #4# to both sides.

#4=((x+3)^2)/8#

Multiply both sides by #8#.

#4xx8=(x+3)^2#

Simplify.

#32=(x+3)^2#

Take the square root of both sides.

#+-sqrt32=x+3#

Subtract #3# from both sides.

#+-sqrt32-3=x#

Prime factorize #32#.

#+-sqrt((2xx2)xx(2xx2)xx2)-3=x#

Simplify.

#+-4sqrt2-3#

Solutions for #x#.

#4sqrt2-3,##-4sqrt2-3=x#

Switch sides.

#x=4sqrt2-3,##-4sqrt2-3#

x-intercepts: #(4sqrt2-3,0),##(-4sqrt2-3,0)#

Approximate values: #(-8.66,0),##(2.66,0),#

Additional Point: y-intercept: value of #y# when #x=0#

Substitute #0# for #x# and solve for #y#. This will be the y-intercept.

#y+4=1/8(x+3)^2#

Subtract #4# from both sides.

#y=1/8(x+3)^2-4#

#y=1/8(0+3)^2-4#

Simplify.

#y=1/8(3^2)-4#

#y=1/8xx9-4#

#y=9/8-4#

Multiply #-4# by #8/8#.

#y=9/8-32/8#

#y=-23/8#

y-intercept: #(0,-23/8)#

Summary

Vertex: #(-3,-4)#

X-intercepts: #(4sqrt2-3,0),##(-4sqrt2-3,0)#

Approximate values for x-intercepts: #(-8.66,0),##(2.66,0)#

Y-intercept: #(0,-23/8)#

Approximate y-intercept: #(0,-2.88)#

Plot the points and sketch a parabola through them. Do not connect the dots.

graph{y+4=1/8(x+3)^2 [-17.64, 14.4, -6.22, 9.8]}