How do you graph the parabola #y= 5/4(x+2)^2 -1# using vertex, intercepts and additional points?

1 Answer
Dec 19, 2017

Vertex: #(-2,-1)#

Y-intercept: #(0,5)#

X-intercepts: #(2/(sqrt5)-2,0)##(-2/(sqrt5)-2,0)#

Explanation:

Graph:

#y=5/4(x+2)^2-1# is a quadratic equation in vertex form:

#y=a(x-h)^2+k#,

where:

#a=5/4#, #h=-2#, and #k=-1#

Vertex: maximum or minimum point of the parabola, #(h,k)#

#(-2,-1)#

Y-intercept: value of #y# when #x=0#

#y=5/4(0+2)^2-1#

#y=5/4(4)-1#

Cancel #4/4#.

#y=5-1#

#y=4#

y-intercept: #(0,4)#

X-intercepts: values of #x# when #y=0#

Note: This is a long process.

Substitute #0# for #y#.

#0=5/4(x+2)^2-1#

Simplify.

#0=(5(x+2)^2)/4-1#

Add #1# to both sides.

#1=(5(x+2)^2)/4#

Multiply both sides by #4#.

#4xx1=(5(x+2)^2)/4xx4#

Cancel #4# on right-hand side.

#4=5(x+2)^2#

Divide both sides by #5#.

#4/5=(5(x+2)^2)/5#

Cancel #5# on the right-hand side.

#4/5=(x+2)^2#

Take the square root of both sides.

#+-sqrt(4/5)=x+2#

Simplify.

#+-(sqrt4)/(sqrt5)=x+2#

Simplify.

#+-2/(sqrt5)=x+2#

Subtract #2# from both sides.

#-2+-2/(sqrt5)=x#

Switch sides.

#x=+-2/(sqrt5)-2#

x-intercepts: #(2/(sqrt5)-2,0)##(-2/(sqrt5)-2,0)#

Approximate x-intercepts: #(1.106,0)##(-2.894,0)#

Summary:

Vertex: #(-2,-1)#

Y-intercept: #(0,5)#

X-intercepts: #(2/(sqrt5)-2,0)##(-2/(sqrt5)-2,0)#

Approx. x-intercepts: #(1.106,0)##(-2.894,0)#

Plot the points and sketch a parabola through the points. Do not connect the dots.

graph{y=5/4(x+2)^2-1 [-10, 10, -5, 5]}