How do you graph #x+y=5# using intercepts?

1 Answer
Jun 6, 2017

Answer:

Plot points and connect the dots.

Explanation:

First, plot the #x# intercept. You get this by setting #y=0#.

#x+0=5#

#x=5#

This gives the point #(5,0)#, plotted here:

graph{((x-5)^2+(y-0)^2 - 1/100)=0 [-1.904, 15.874, -3.68, 5.21]}

Next, plot the #y# intercept. You get this by setting #x=0#.

#0+y=5#

#y=5#

This gives the point #(0,5)#, plotted here:

graph{((x-5)^2+(y-0)^2 - 1/100)((x-0)^2+(y-5)^2 - 1/100)=0 [-1.904, 15.874, -3.68, 5.51]}

Finally, draw a line connecting the two points on the graph. The solution looks like this:

graph{((x-5)^2+(y-0)^2 - 1/100)((x-0)^2+(y-5)^2 - 1/100)(x+y-5)=0 [-1.904, 15.874, -3.68, 5.51]}