How do you graph #y=2xx3^(x-2)-1#?

1 Answer
Jun 15, 2017

See explanation

Explanation:

#color(blue)("Determine the x-intercept")#

Set #y=0=2(3^(x-2))-1#

#1=2(3^(x-2))#

#3^(x-2)=1/2#

Lake logs

#(x-2)ln(3)=ln(1/2)#

#x=(ln(1)-ln(2))/ln(3) +2#

#x~~1.37# to 2 decimal places
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y-intercept")#

Set #y=2(3^(0-2))-1#

#y=2/(3^2)-1 = -7/9#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the extremities")#

Set #y=k" "# where #" "k=lim_(x->+oo) 2(3^(x-2))-1#

#" "k->2oo-1 = oo#

Thus for #x ->oo" we have "y->oo#

Set #y=k" "# where #" "k=lim_(x->-oo) 2(3^(x-2))-1#

#" "k->2/oo-1 = 0-1 = -1 #
This is an asymptote.

Tony B