# How do you graph y=-5/2x-3 using slope and intercept?

Aug 9, 2017

$\text{see explanation}$

#### Explanation:

$\text{the equation of a line in "color(blue)"slope-intercept form}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{y = m x + b} \textcolor{w h i t e}{\frac{2}{2}} |}}}$

$\text{where m represents the slope and b the y-intercept}$

$y = - \frac{5}{2} x - 3 \text{ is in this form}$

$\Rightarrow \text{slope "=-5/2" and y-intercept } = - 3$

$\text{plot the point } \left(0 , - 3\right)$

$m = - \frac{5}{2}$ slopes downwards from left to right 5 units vertically and 2 units horizontally from point to point.

$\text{from } \left(0 , - 3\right)$ move 5 units up and 2 units left to obtain the point
$\left(- 2 , 2\right)$

Or move 5 units down and 2 units right to obtain $\left(2 , - 8\right)$

$\text{plot these points and draw a straight line through them}$
graph{(y+5/2x+3)((x-0)^2+(y+3)^2-0.04)((x+2)^2+(y-2)^2-0.04)((x-2)^2+(y+8)^2-0.04)=0 [-20, 20, -10, 10]}