How do you identify the vertex, focus, directrix and the length of the latus rectum and graph #x=3y^2+4y+1#?

1 Answer
Oct 13, 2017

Focus = (-0.6667,-0.25
Vertex = (-0.6667, -0.3333)
Directrix = 0.4167
Length of latus rectum = 5.8214

Explanation:

Given Eqn of parable #x=3y^2+4x+1#
It is in the form #ax^2+bx+c#
#a=3, b=4, c=1#

Focus #=((-b)/2a, c-((b^2-1)/(4a))#
#(-b)/(2a)=-4/6=-(2/3)#
#c-(b^2-1)/(4a)=1-(15/12)=-(1/4)#
Focus #(-2/3,-1/4)~~(-0.6667,-0.25)#

Vertex #=-b/(2a),-(b^2-4ac)/(4a)#
#-b/(2a)=-(2/3)#
#-(b^2-4ac)/(2a)=-(16-12)/12=-(1/3)#
Vertex #(-2/3,-1/3)~~(-0.6667,-0.3333)#

Directrix #x=>c-(b^2+1)/(4a)#
#x=>1-(17)/12=-(5/12)~~0.4167#

Length of latus rectum of parabola is 4p where p is the distance from focus to vertex.
#p=sqrt((16/9)+(49/144))=sqrt(305/144)#
#4p=(4/12)*sqrt305~~5.8214##