How do you integrate #int 1/sqrt(4x^2+12x-16) # using trigonometric substitution?
1 Answer
Explanation:
Start by factoring the denominator.
#int 1/sqrt(4(x^2 + 3x - 4))dx#
#int1/(2sqrt(x^2 + 3x - 4))dx#
#1/2int1/sqrt(x^2 + 3x - 4)dx#
Now complete the square in the denominator.
#1/2int 1/sqrt(1(x^2 + 3x + 9/4 - 9/4) - 4)dx#
#1/2int 1/sqrt(1(x + 3/2)^2 - 9/4 - 4)dx#
#1/2int 1/sqrt((x + 3/2)^2 - 25/4)dx#
Now let
#1/2int 1/sqrt(u^2 - 25/4)du#
Apply the substitution
#1/2int 1/sqrt((5/2sectheta)^2 - 25/4)* 5/2secthetatantheta d theta#
#1/2int 1/sqrt(25/4sec^2theta - 25/4)* 5/2secthetatantheta d theta#
#1/2int 1/sqrt(25/4(sec^2theta - 1))* 5/2secthetatantheta d theta#
Apply
#1/2int 1/sqrt(25/4tan^2theta)* 5/2secthetatantheta d theta#
#1/2int 1/(5/2tantheta)* 5/2secthetatantheta d theta#
#1/2int sec theta d theta#
This is a known integral:
We must determine an expression for
As you can see,
#1/2ln|sqrt(4u^2 -25)/5 + (2u)/5| + C#
#1/2ln|(sqrt(4u^2 - 25) + 2u)/5| + C#
#1/2ln|(sqrt(4(x + 3/2)^2 - 25) + 2(x + 3/2))/5| + C#
#1/2ln|(sqrt(4x^2 + 12x - 16) + 2x + 3)/5| + C#
Hopefully this helps!