How do you integrate #int 1/sqrt(9x^2-18x+25) # using trigonometric substitution?

1 Answer
Feb 27, 2017

#1/3ln|(3(x - 1) + sqrt(9(x - 1)^2 + 16))/4| +C#

Explanation:

Your first step will be to complete the square in the denominator.

#int 1/sqrt(9(x^2 - 2x) + 25)dx#

#int 1/sqrt(9(x^2 - 2x + 1 - 1) + 25)dx#

#int 1/sqrt(9(x^2 - 2x + 1) - 9 + 25)dx#

#int 1/sqrt(9(x - 1)^2 + 16)dx#

We want to convert the radical to the form #sqrt(a^2 + x^2)# in order to make the trig substitution. We can do this by making the u-substitution #u = x - 1#. Then #du = dx#.

#int 1/sqrt(9u^2 + 16)du#

Let #u = 4/3tantheta#. Then #du = 4/3sec^2theta d theta#.

#int 1/sqrt(9(4/3tantheta)^2 + 16) 4/3sec^2theta d theta#

#int 1/sqrt(16tan^2theta + 16) * 4/3sec^2theta d theta#

#int 1/sqrt(16(tan^2theta + 1)) * 4/3sec^2theta d theta#

The whole point of making the trig substitution was to get rid of the radical. Here is our chance: apply the pythagorean identity #1 + tan^2beta = sec^2beta#.

#int 1/sqrt(16sec^2theta) * 4/3sec^2theta d theta#

#int 1/(4sectheta) * 4/3sec^2theta d theta#

#int 1/3sectheta d theta#

This is a known integral, whose derivation can be found here

#1/3ln|sectheta + tantheta| + C#

Now comes the last part of the solution--reversing the substitutions. From our initial substitution, we know that #(3u)/4 = tantheta#, so the hypotenuse of the imaginary triangle would be #sqrt(9u^2 + 16)#. Therefore, #sectheta = sqrt(9u^2 + 16)/4#.

#1/3ln|(3u)/4 + sqrt(9u^2 + 16)/4| + C#

#1/3ln|(3(x - 1))/4 + sqrt(9(x - 1)^2 + 16)/4| + C#

#1/3ln|(3(x - 1) + sqrt(9(x - 1)^2 + 16))/4| +C#

Hopefully this helps!