How do you integrate #int 1/((x+7)(x^2+9))# using partial fractions?

1 Answer
Oct 2, 2017

#int dx/((x+7)(x^2+9)) = 1/58 ln ( abs(x+7)/sqrt(x^2+9)) +7/174arctan(x/3) +C#

Explanation:

Since one of the factors of the denominator is of second degree we apply partial fractions decomposition as:

#1/((x+7)(x^2+9)) = A/(x+7)+ (Bx+C)/(x^2+9)#

#1/((x+7)(x^2+9)) = (A(x^2+9)+ (Bx+C)(x+7))/((x+7)(x^2+9))#

#1 = Ax^2 +9A +Bx^2+Cx+7Bx+7C#

#1= (A+B)x^2 +(7B+C)x +(9A+7C)#

Equation the coefficients of the same degree in #x#:

#{(A+B=0),(7B+C=0),(9A+7C=1):}#

#{(A=-B),(7B+C=0),(-9B+7C=1):}#

#{(A=-B),(B=-C/7),(9/7C+7C=1):}#

#{(A=1/58),(B=-1/58),(C=7/58):}#

So:

#int dx/((x+7)(x^2+9)) = 1/58int dx/(x+7)- 1/58 int x /(x^2+9)dx+7/58 int dx/(x^2+9)#

Solve the three integrals separately:

#int dx/(x+7) = ln abs(x+7) +C_1#

#int x /(x^2+9)dx = 1/2 int (d(x^2+9))/(x^2+9) = 1/2 ln (x^2+9) + C_2#

#int dx/(x^2+9) = 1/3int (d(x/3))/( ( x/3)^2 +1) = 1/3 arctan(x/3) +C_3#

putting the solutions together:

#int dx/((x+7)(x^2+9)) = 1/58 ( ln abs(x+7) -1/2 ln (x^2+9) ) +7/174arctan(x/3) +C#

and finally using the properties of logarithms:

#int dx/((x+7)(x^2+9)) = 1/58 ln ( abs(x+7)/sqrt(x^2+9)) +7/174arctan(x/3) +C#