Substitute:
#u = sqrt(4x^2+9)#
#du = (4xdx)/sqrt(4x^2+9)#
Then:
#int dx/(xsqrt(4x^2+9)) = 1/4 int 1/x^2(4xdx)/sqrt(4x^2+9)#
and as:
#x^2 = (u^2-9)/4#
then:
#int dx/(xsqrt(4x^2+9)) = 1/4 int 4/(u^2-9) du = int (du)/((u-3)(u+3))#
Using now partial fractions decomposition:
#1/((u-3)(u+3)) = A/(u-3)+B/(u+3)#
#1 = A(u+3)+B(u-3)#
#1 = (A+B)u+3(A-B)#
#{(A+B=0),(A-B=1/3):}#
#{(A=1/6),(B=-1/6):}#
So:
#int dx/(xsqrt(4x^2+9)) = 1/6 int (du)/(u-3) -1/6 int (du)/(u+3)#
#int dx/(xsqrt(4x^2+9)) = 1/6 ln abs(u-3) -1/6 ln abs (u+3) +C#
and undoing the substitution:
#int dx/(xsqrt(4x^2+9)) = 1/6 ln abs (3-sqrt(4x^2+9)) -1/6 ln (3+sqrt(4x^2+9))+ C#