How do you integrate #int (4x-2) /( 3(x-1)^2)# using partial fractions?

1 Answer
May 12, 2016

#int(4x-2)/(3(x-1)^2)dx=4/3ln(x-1)-4/(3(x-1))+c#

Explanation:

Let us first find partial fractions of #(4x-2)/(3(x-1)^2)# and for this let

#(4x-2)/((x-1)^2)hArrA/(x-1)+B/(x-1)^2# or

#(4x-2)/((x-1)^2)hArr(A(x-1)+B)/((x-1)^2)=(Ax+B-A)/((x-1)^2)#

Hence #A=4# and #B-A=-2# i.e. #B=4-2=2#

Hence #int(4x-2)/(3(x-1)^2)dx=1/3int[2/(x-1)+2/(x-1)^2]dx#

= #2/3int2/(x-1)dx+2/3int2/(x-1)^2dx+k#

= #4/3ln(x-1)-4/(3(x-1))+c#