How do you integrate #int cos^3xsinxdx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 2 Answers Andrea S. · 256 Jan 23, 2017 #int cos^3x sinx dx = - cos^4x/4+C# Explanation: Note that: #-sinx dx = d(cosx)# so if you substitute #u= cosx# you have: #int cos^3x sinx dx = - int u^3 du = - u^4/4 +C = - cos^4x/4+C# Answer link 256 Jan 23, 2017 Since #d/dx(cos(x))=-sin(x)# then #intcos^3(x)sin(x)dx=-intcos^3(x)dcos(x)=-(cos^(4)(x))/4+C# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 5082 views around the world You can reuse this answer Creative Commons License