How do you integrate #int dx/sqrt(16+x^2)^2# by trigonometric substitution?

1 Answer
Nov 9, 2016

#" "#

Assuming you meant: #intdx/sqrt(16+x^2)#

Let #x=4tantheta#. This implies that #dx=4sec^2thetacolor(white).d theta#. Substituting these in yields:

#=int(4sec^2thetacolor(white).d theta)/sqrt(16+16tan^2theta)=4/sqrt16intsec^2theta/sqrt(1+tan^2theta)d theta#

Recall that #1+tan^2theta=sec^2theta#:

#=intsec^2theta/secthetad theta=intsecthetacolor(white).d theta=lnabs(tantheta+sectheta)+C#

Rewriting in terms of tangent since our substitution is #tantheta=x/4#:

#=lnabs(tantheta+sqrt(1+tan^2theta))+C=lnabs(x/4+sqrt(1+x^2/16))+C#

#=lnabs(x/4+1/4sqrt(16+x^2))+C#

Factoring the #1/4# and moving it out of the integral as the constant #ln(1/4)# through the #log(AB)=log(A)+log(B)# rule, we see it combines with the constant of integration:

#=lnabs(x+sqrt(16+x^2))+C#

#" "#

Assuming you meant: #intdx/(sqrt(16+x^2))^2#

The square root and the exponent cancel, leaving just:

#=intdx/(16+x^2)#

Now use the same substitution as before, #x=4tantheta# such that #dx=4sec^2thetacolor(white).d theta#.

#=int(4sec^2thetacolor(white).d theta)/(16+16tan^2theta)=1/4intsec^2theta/(1+tan^2theta)d theta=1/4intd theta#

#=1/4theta+C#

From the substitution #x=4tantheta# solving for #theta# yields:

#=1/4arctan(x/4)+C#