How do you integrate #int sec^2x/(4-tan^2x)^(3/2)# by trigonometric substitution?
1 Answer
Explanation:
We have:
#I=intsec^2x/(4-tan^2x)^(3/2)dx#
We will first use the non-trigonometric substitution
#I=int(du)/(4-u^2)^(3/2)#
Now we will apply the trigonometric substitution
#I=int(2costhetad theta)/(4-4sin^2theta)^(3/2)#
#=int(2costhetad theta)/(4^(3/2)(1-sin^2theta)^(3/2))#
Note that
#I=int(2costhetad theta)/(8(cos^2theta)^(3/2))#
#=int(costhetad theta)/(4cos^3theta)#
#=1/4int(d theta)/cos^2theta#
#=1/4intsec^2thetad theta#
#=1/4tantheta+C#
Recall that
#I=1/4tan(arcsin(u/2))+C#
We can simplify this: draw the triangle where sine is
Thus, the tangent is opposite over adjacent, or:
#I=1/4(u/sqrt(4-u^2))+C#
Now, since
#I=tanx/(4sqrt(4-tan^2x))+C#