How do you integrate #int sqrt(1+x^2)/xdx# using trigonometric substitution?
1 Answer
Explanation:
We let
#I = int sqrt(1 + tan^2theta)/tantheta * sec^2theta d theta#
#I = int sqrt(sec^2theta)/tantheta * sec^2theta d theta#
#I = int sec^3theta/tantheta d theta#
#I = int (1/cos^3theta)/(sintheta/costheta) d theta#
#I = int cscthetasec^2theta#
#I = int csctheta(1 + tan^2theta)d theta#
#I = int csctheta + cscthetatan^2theta d theta#
#I = int csctheta + secthetacostheta d theta#
Now these are two known integrals.
#I = sectheta - ln|csctheta + cottheta| + C#
IF
#I = sqrt(x^2 + 1) - ln|sqrt(x^2 + 1)/x + 1/x| + C#
#I = sqrt(x^2+ 1) - ln|(sqrt(x^2 + 1) + 1)/x| + C#
Hopefully this helps!