How do you integrate #int (x^2-1)/sqrt(2x-1)dx#?

2 Answers
Jan 6, 2017

The answer is #1/20(2x - 1)^(5/2) + 1/6(2x - 1)^(3/2) - 3/4(2x - 1)^(1/2) + C#

Explanation:

Let #u = 2x - 1#. Then #du = 2dx# and #dx = 1/2du#.

#int(x^2 - 1)/sqrt(u) * 1/2du#

We want to get rid of the x's. #x = (u + 1)/2#, so #x^2 = ((u + 1)/2)^2#

#int(((u + 1)/2)^2 - 1)/sqrt(u) * 1/2du#

Expand:

#1/2int(((u^2 + 2u + 1)/4) - 1)/sqrt(u)du#

#1/2int(u^2 + 2u + 1 - 4)/(4sqrt(u))du#

#1/8int(u^2 + 2u - 3)/sqrt(u)#

#1/8int(u^2/sqrt(u) + (2u)/sqrt(u) - 3/sqrt(u))du#

#1/8int(u^(3/2) + 2u^(1/2) - 3u^(-1/2))du#

#1/8(2/5u^(5/2) + 4/3u^(3/2) - 6u^(1/2))#

#1/20u^(5/2) + 1/6u^(3/2) - 3/4u^(1/2)#

#1/20(2x - 1)^(5/2) + 1/6(2x - 1)^(3/2) - 3/4(2x - 1)^(1/2) + C#

Hopefully this helps!

Nov 15, 2017

#int (x^2-1)/sqrt(2x-1)*dx#

=#1/4*int (4x^2-4)/sqrt(2x-1)*dx#

=#1/4*int ((2x)^2-4)/sqrt(2x-1)*dx#

After using #u=sqrt(2x-1)#, #2x=u^2+1#, #2dx=2u*du# or #dx=u*du# transforms, this integral became

#1/4*int ((2x)^2-4)/sqrt(2x-1)*dx#

=#1/4*int ((u^2+1)^2-4)/u*(u*du)#

=#1/4*int (u^4+2u^2-3)*du#

=#1/4*(u^5/5+(2u^3)/3-3u)+C#

=#u^5/20+u^3/6-(3u)/4+C#

=#1/20*(2x-1)^(5/2)+1/6*(2x-1)^(3/2)-3/4*sqrt(2x-1)+C#