How do you integrate #int (x^3 - 2) / (x^4 - 1)# using partial fractions?
1 Answer
Explanation:
First, let's factor
#x^4-1 = (x^2-1)(x^2+1) = (x-1)(x+1)(x^2+1)#
Using partial fraction separation, we can say that:
#(x^3-2)/((x-1)(x+1)(x^2+1)) = A/(x-1) + B/(x+1)+(Cx+D)/(x^2+1)#
#x^3-2 = A(x+1)(x^2+1)+B(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Both the
#(-1)^3-2 = A(0)(2)+B(-2)(2)+(-C+D)(0)(-2)#
#-3 = -4B#
#3/4 = B#
Now we can substitute this into the original equation.
#x^3-2 = A(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitute
#1-2 = A(2)(2) + 3/4(0)(2) + (C+D)(2)(0)#
#-1 = 4A#
#-1/4 = A#
Now substitute this into the original equation.
#x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+D)(x+1)(x-1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Plug in
#-2 = -1/4(1)(1)+3/4(-1)(1)+(0C+D)(1)(-1)#
#-2 = -1/4 - 3/4 - D#
#-1 = -D#
#1 = D#
Now substitute this into the original equation:
#x^3-2 = -1/4(x+1)(x^2+1)+3/4(x-1)(x^2+1)+(Cx+1)(x+1)(x-1)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now we can pretty much plug in any number to solve for
#2^3-2 = -1/4(3)(5)+3/4(1)(5)+(2C+1)(3)(1)#
#6 = -15/4+15/4 + (6C+3)#
#6 = 6C+3#
#3=6C#
#1/2 = C#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So we have:
#(x^3-2)/((x-1)(x+1)(x^2+1)) = (-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)#
All that is left to do is take the integral of this function.
#int[(-1/4)/(x-1) + (3/4)/(x+1)+(1/2x+1)/(x^2+1)]dx#
#= int(-1/4)/(x-1)dx + int(3/4)/(x+1)dx + int(1/2x+1)/(x^2+1)dx#
We can integrate the first two pretty easily, and then we can split the numerator of the last integral into two.
#= -1/4ln|x-1|+3/4ln|x+1|+int(1/2x)/(x^2+1)dx + int1/(x^2+1)dx#
Use the substitution
#= -1/4ln|x-1|+3/4ln|x+1|+int(1/4)/udu + int1/(x^2+1)dx#
#= -1/4ln|x-1|+3/4ln|x+1|+1/4ln(u) + tan^-1(x)#
And finally simplify everything (don't forget
#= -1/4ln|x-1|+1/4ln|(x+1)^3| + 1/4ln|x^2+1| + tan^-1(x)#
#= 1/4ln|((x^2+1)(x+1)^3)/(x-1)|+tan^-1(x) + C#
Final Answer