How do you integrate #int x/sqrt(3x^2-6x+17) dx# using trigonometric substitution?

1 Answer
Jun 27, 2018

#int x/sqrt(3x^2-6x+17)dx = 1/3 sqrt(3x^2-6x+17) + 1/sqrt3 ln (sqrt3 abs(x-1)+sqrt(3x^2-6x+17) ) +C#

Explanation:

Split the rational function:

#x/sqrt(3x^2-6x+17) = ((1/6(6x-6))+1)/sqrt(3x^2-6x+17) #

so that using the linearity of the integral:

#int x/sqrt(3x^2-6x+17)dx = 1/6 int (6x-6)/sqrt(3x^2-6x+17)dx + int dx/sqrt(3x^2-6x+17) #

Solve now the first integral by substituting:

#u = 3x^2-6x+17#

#du = (6x-6)dx#

so that:

# 1/6 int (6x-6)/sqrt(3x^2-6x+17)dx = 1/3 int (du)/(2sqrtu) = 1/3 sqrtu+C#

and undoing the substitution:

# 1/6 int (6x-6)/sqrt(3x^2-6x+17)dx = 1/3 sqrt(3x^2-6x+17)+C#

Solve the second integral by complete the square at the denominator:

#int dx/sqrt(3x^2-6x+17) = int dx/sqrt(3(x^2-2x+1)+14)#

#int dx/sqrt(3x^2-6x+17) = int dx/sqrt(3 (x-1)^2+14)#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt14 int dx/sqrt(( (sqrt3 (x-1))/sqrt14)^2+1)#

Now substitute:

#v = (sqrt3 (x-1))/sqrt14#

#dv = sqrt3/sqrt14dx#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 int (dv)/sqrt(v^2+1)#

and then:

#v = tant# with #t in (pi/2,pi/2)#

#dv = sec^2t dt#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 int (sec^2tdt)/sqrt(tan^2t+1)#

Using the trigonometric identity:

#tan^2t+1 = sec^2t#

and as #sect > 0 # for #t in (pi/2,pi/2)#:

#sqrt(tan^2t+1) = sect#

so:

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 int sectdt#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 ln abs (sect+tant) +C#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 ln abs (v+sqrt(v^2+1)) +C#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 ln abs ((sqrt3 (x-1))/sqrt14+sqrt(((sqrt3 (x-1))/sqrt14)^2+1)) +C#

#int dx/sqrt(3x^2-6x+17) = 1/sqrt3 ln (sqrt3 abs(x-1)+sqrt(3x^2-6x+17) ) +C#

Putting the results together:

#int x/sqrt(3x^2-6x+17)dx = 1/3 sqrt(3x^2-6x+17) + 1/sqrt3 ln (sqrt3 abs(x-1)+sqrt(3x^2-6x+17) ) +C#