How do you integrate #int xsec^-1x# by integration by parts method?
1 Answer
This is a problem that will necessitate integration by parts. We let
#u = sec^-1x#
#secu = x#
#secutanu(du)/dx= 1#
#(du)/dx= 1/(secutanu)#
Because
This means the side opposite would measure
#(du)/dx = 1/(xsqrt(x^2 - 1)#
#du = 1/(xsqrt(x^2 - 1)) dx#
We now have, by the integration by parts formula,
#int(u dv) = uv - int(v du)#
#intxsec^-1xdx = sec^-1x(1/2x^2) - int1/2x^2 1/(xsqrt(x^2 - 1))dx#
#intxsec^-1xdx = sec^-1x1/2x^2 - 1/2 int x/sqrt(x^2 - 1)dx#
We could use trig substitution to integration
Let
#intxsec^-1xdx = sec^-1x1/2x^2 - 1/2int x/sqrt(u) * (du)/(2x)#
#intxsec^-1xdx = sec^-1x1/2x^2 - 1/4 int u^(-1/2) du#
#intxsec^-1x dx = 1/2x^2sec^-1x - 1/4(2u^(1/2)) + C#
#intxsec^-1xdx = 1/2x^2sec^-1x - 1/2u^(1/2) + C#
#intxsec^-1xdx = 1/2x^2sec^-1x - 1/2(x^2 - 1)^(1/2) + C#
Hopefully this helps!