How do you integrate #(x^2+x)/((x+2)(x-1)^2)# using partial fractions?
1 Answer
#int (x^2+x)/((x+2)(x-1)^2) dx =2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + C#
Explanation:
Since the denominator has already been factored for us, we can tell that we're looking for a partial fraction decomposition of the form:
#(x^2+x)/((x+2)(x-1)^2)#
#=A/(x+2)+B/(x-1)+C/(x-1)^2#
#=(A(x-1)^2+B(x+2)(x-1)+C(x+2))/((x+2)(x-1)^2)#
#=((A+B)x^2+(-2A+B+C)x+(A-2B+2C))/((x+2)(x-1)^2)#
Equating coefficients we get the following system of linear equations:
#{ (A+B=1), (-2A+B+C=1), (A-2B+2C=0) :}#
Adding all three equations together, we find:
#3C = 2#
So
Subtracting the second equation from the first, we have:
#3A-C = 0#
Hence
Then from the first equation we find
So:
#(x^2+x)/((x+2)(x-1)^2)=2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2)#
Hence:
#int (x^2+x)/((x+2)(x-1)^2) dx#
#=int 2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2) dx#
#=2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + C#