How do you multiply #(-10u-3)(3u+1)#?

1 Answer
Jun 18, 2017

Answer:

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(-10u) - color(red)(3))(color(blue)(3u) + color(blue)(1))# becomes:

#-(color(red)(10u) xx color(blue)(3u)) - (color(red)(10u) xx color(blue)(1)) - (color(red)(3) xx color(blue)(3u)) - (color(red)(3) xx color(blue)(1))#

#-30u^2 -10u - 9u - 3#

We can now combine like terms:

#-30u^2 + (-10 - 9)u - 3#

#-30u^2 + (-19)u - 3#

#-30u^2 - 19u - 3#