How do you multiply #(3a-2)(a-1)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Alan P. Jun 22, 2016 #(3a-2)(a-1)=underline(3a^2-5a+2)# Explanation: One method is by distribution: #(color(red)(3a)color(blue)(-2))(color(green)acolor(brown)(-1))# #color(white)("XXX")=color(red)(3a)(color(green)(a)color(brown)(-1))color(blue)(-2)(color(green)(a)color(brown)(-1))# #color(white)("XXX")=(color(purple)(3a^2-3a))color(blue)(-)(color(cyan)(2a-2))# #color(white)("XXX")=3a^2-5a+2# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 2109 views around the world You can reuse this answer Creative Commons License