How do you multiply (3x- 1)^2(3x1)2?

1 Answer
Jul 24, 2017

See a solution process below:

Explanation:

Use this rule to multiply this expression:

(color(red)(a) - color(blue)(b))^2 = color(red)(a)^2 - 2color(red)(a)color(blue)(b) + color(blue)(b)^2(ab)2=a22ab+b2

Substituting 3x3x for aa and 11 for bb gives:

(color(red)((3x)) - color(blue)(1))^2 => color(red)((3x))^2 - (2 * color(red)(3x) * color(blue)(1)) + color(blue)(1)^2 => ((3x)1)2(3x)2(23x1)+12

9x^2 - 6x + 19x26x+1

Another method is to first rewrite the expression as:

(3x - 1)(3x - 1)(3x1)(3x1)

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(3x) - color(red)(1))(color(blue)(3x) - color(blue)(1))(3x1)(3x1) becomes:

(color(red)(3x) xx color(blue)(3x)) - (color(red)(3x) xx color(blue)(1)) - (color(red)(1) xx color(blue)(3x)) + (color(red)(1) xx color(blue)(1))(3x×3x)(3x×1)(1×3x)+(1×1)

9x^2 - 3x - 3x + 19x23x3x+1

We can now combine like terms:

9x^2 + (-3 - 3)x + 19x2+(33)x+1

9x^2 + (-6)x + 19x2+(6)x+1

9x^2 - 6x + 19x26x+1