Use this rule to multiply this expression:
(color(red)(a) - color(blue)(b))^2 = color(red)(a)^2 - 2color(red)(a)color(blue)(b) + color(blue)(b)^2(a−b)2=a2−2ab+b2
Substituting 3x3x for aa and 11 for bb gives:
(color(red)((3x)) - color(blue)(1))^2 => color(red)((3x))^2 - (2 * color(red)(3x) * color(blue)(1)) + color(blue)(1)^2 => ((3x)−1)2⇒(3x)2−(2⋅3x⋅1)+12⇒
9x^2 - 6x + 19x2−6x+1
Another method is to first rewrite the expression as:
(3x - 1)(3x - 1)(3x−1)(3x−1)
To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
(color(red)(3x) - color(red)(1))(color(blue)(3x) - color(blue)(1))(3x−1)(3x−1) becomes:
(color(red)(3x) xx color(blue)(3x)) - (color(red)(3x) xx color(blue)(1)) - (color(red)(1) xx color(blue)(3x)) + (color(red)(1) xx color(blue)(1))(3x×3x)−(3x×1)−(1×3x)+(1×1)
9x^2 - 3x - 3x + 19x2−3x−3x+1
We can now combine like terms:
9x^2 + (-3 - 3)x + 19x2+(−3−3)x+1
9x^2 + (-6)x + 19x2+(−6)x+1
9x^2 - 6x + 19x2−6x+1