How do you multiply #(5m-1)(6m-5)#?

2 Answers
May 31, 2018

Answer:

#30m^2-31m+5#

Explanation:

#(5m-1)(6m-5)#

= #5m(6m-5)-1(6m-5)#

= #30m^2-25m-6m+5#

= #30m^2-31m+5#

May 31, 2018

Answer:

#30m^2 - 31m + 5#

Explanation:

#(5m-1)(6m-5)#

To multiply/simplify this, we use FOIL:
enter image source here

First, multiply out the #color(teal)("firsts")#:
#color(teal)(5m * 6m = 30m^2)#

Then the #color(indigo)("outers")#:
#color(indigo)(5m * -5 = -25m)#

Now the #color(darkorange)("inners")#:
#color(darkorange)(-1 * 6m = -6m)#

Finally the #color(forestgreen)"lasts"#:
#color(forestgreen)(-1 * -5 = 5)#

Now combine them all together:
#color(teal)(30m^2) quadcolor(indigo)(-quad25m) quadcolor(darkorange)(-quad6m) quadcolor(forestgreen)(+quad5)#

We can still combine the like terms #-25m - 6m#:
#30m^2 - 31m + 5#

Hope this helps!