How do you multiply #(7n^2+8n+7)(7n^2+n-5)#?

1 Answer
Feb 28, 2017

Answer:

#49n^4 +63n^3 + 22n^2 = 33n - 35#

Explanation:

Distribution-
#(7n^2 + 8n + 7)(7n^2 + n - 5)#

Multiply #7n^2#, #8n#, and #7# EACH by #7n^2#, #n#, and #-5#.

For #7n^2# :
#7n^2*7n^2 = 49n^4#
#7n^2*n = 7n^3#
#7n^2*-5 = -35n^2#

do the same for #8n# and #7#
You should get:
#(49n^4 + 7n^3 - 35n^2) + (56n^3 +8n^2 - 40n) +(49n^2 +7n - 35)#

Now combine like terms-

#49n^4 + 63n^3 + 22n^2 - 33n - 35#