How do you multiply and simplify #(- 3x ^ { 3} y ^ { 4} z ^ { 3} ) ^ { 3} ( 2y z ^ { 2} )#? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer Shwetank Mauria Jun 13, 2017 #(-3x^3y^4z^3)^3(2yz^2)=-54x^9y^13z^11# Explanation: As #(a^m)^n=a^((mxxn))# and #a^mxxa^n=a^((m+n))# #(-3x^3y^4z^3)^3(2yz^2)# = #((-3)^3x^(3xx3)y^(4xx3)z^(3xx3))(2yz^2# = #(-27x^9y^12z^9)xx(2yz^2)# = #(-27)xx2xxx^9y^(12+1)z^(9+2)# = #-54x^9y^13z^11# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3ยท4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 2565 views around the world You can reuse this answer Creative Commons License