How do you multiply #(x^2 + -4)(x^2 + -4)#?

1 Answer
Feb 8, 2017

Answer:

See the entire solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(x^2) + color(red)(-4))(color(blue)(x^2) + color(blue)(-4)) ->#

#(color(red)(x^2) - color(red)(4))(color(blue)(x^2) - color(blue)(4))# becomes:

#(color(red)(x^2) xx color(blue)(x^2)) - (color(red)(x^2) xx color(blue)(4)) - (color(red)(4) xx color(blue)(x^2)) + (color(red)(4) xx color(blue)(4))#

#x^4 - 4x^2 - 4x^2 + 16#

We can now combine like terms:

#x^4 + (-4 - 4)x^2 + 16#

#x^4 + (-8)x^2 + 16#

#x^4 - 8x^2 + 16#