How do you multiply #(x+4)^3#?
2 Answers
Jul 4, 2017
See a solution process below:
Explanation:
We can use Pascal's triangle to solve this problem.
The triangle values for the exponent 3 are:
Therefore
Jul 4, 2017
Explanation:
#"factors of the form"#
#(x+a)(x+b)(x+c)" can be expanded as"#
#x^3+(a+b+c)x^2+(ab+ac+bc)x+abc#
#rArr(x+4)^3=(x+4)(x+4)(x+4)#
#"with " a=b=c=4#
#rArr(x+4)^3#
#=x^3+(4+4+4)x^2+(16+16+16)x+4^3#
#=x^3+12x^2+48x+64#