How do you multiply #(x+5)(2x^2+x-10)#?

1 Answer
Jun 25, 2015

Answer:

# = color(blue)(2x^3 + 11x^2 - 5x -50#

Explanation:

#color(blue)((x+5))(2x^2 + x - 10)#

  • Here, we first multiply #color(blue)(x) #contained in the first bracket with all three terms of second bracket:

# = color(blue)(x).(2x^2) + color(blue)(x) . x + color(blue)(x) . (-10)#

# = 2x^3 + x^2 -10x#........................#(1)#

  • Now, we multiply #color(blue)(5)# contained in the first bracket with all three terms of second bracket:

# = color(blue)(5).(2x^2) + color(blue)(5) . x + color(blue)(5) . (-10)#

# = 10x^2 + 5x -50#.........................#(2)#

combining #(1)# and #(2)#

# = color(blue)(2x^3 + 11x^2 - 5x -50#