How do you prove #(1+tanx)/(1+cotx)=2#?
2 Answers
May 24, 2016
This identity is false!!!
Explanation:
Simplifying the left side:
#(1 + sinx/cosx)/(1 + cosx/sinx)
Hopefully this helps!
May 24, 2016
Another way to prove this false is as follows.
Since
#color(blue)((1+tanx)/(1+cotx))*(tanx)/(tanx)#
#= (tanx(1+tanx))/(tanx + tanxcotx)#
#= (tanxcancel((1+tanx)))/cancel(1+tanx)#
#= color(blue)(tanx)#