How do you prove #secxcscx = sinx + cosxcotx#?
1 Answer
Mar 30, 2018
The identity is FALSE
Explanation:
We have:
#(1/cosx)(1/sinx) = sinx + cosx(cosx/sinx)#
#1/(cosxsinx) = sinx + cos^2x/sinx#
#1/(cosxsinx) = (sin^2x + cos^2x)/sinx#
#1/(cosxsinx) = 1/sinx#
This is clearly false.
Hopefully this helps!