How do you prove #( tan A + tan B) / (1-tan A tan B) = (cot A + cot B ) / ( cot A cot B - 1)#?
1 Answer
Apr 9, 2018
We can rewrite the right hand side as follows:
#=(1/tanA + 1/tanB)/(1/tanA1/tanB - 1)#
#=((tanB + tanA)/(tanAtanB))/((1 - tanAtanB)/(tanAtanB)#
#=(tanA + tanB)/(1 - tanAtanB)#
Since the left and right hand sides are equal, the identity has been proved.
Hopefully this helps!