How do you prove #tantheta-cottheta=(sectheta-csctheta)(sintheta+costheta)#?

1 Answer
Sep 18, 2016

Please see below.

Explanation:

#tantheta-cottheta#

= #sintheta/costheta-costheta/sintheta#

= #(sin^2theta-cos^2theta)/(costhetasintheta)#

= #((sintheta-costheta)(sintheta+costheta))/(costhetasintheta)#

= #(sintheta+costheta)xx(sintheta-costheta)/(costhetasintheta)#

= #(sintheta+costheta)xx(sintheta/(costhetasintheta)-costheta/(costhetasintheta))#

= #(sintheta+costheta)xx(1/costheta-1/sintheta)#

= #(sintheta+costheta)(sectheta-csctheta)#

= #(sectheta-csctheta)(sintheta+costheta)#