How do you put #x^2-2x+2y^2-12y+3=0# in standard form, find the center, the endpoints, vertices, the foci and eccentricity?

1 Answer

Given:
#x^2-2x+2y^2-12y+3=0#

Now,
#x^2-2x=x^2-2x+1-1#
#=(x-1)^2-1#
#2y^2-12y=2(y^2-6y)#
#(y^2-6y)=y^2-6y+9-9#
#=(y-3)^2-9#
#2y^2-12y=2((y-3)^2-9)#

The given equation becomes
#(x-1)^2-1+2((y-3)^2-9)+3=0#

Simplifying
#(x-1)^2-1+2(y-3)^2-18+3=0#
#(x-1)^2+2(y-3)^2=18+1-3#
#(x-1)^2+2(y-3)^2=16#

Dividing throughout by 16, we have
#(x-1)^2/16+2(y-3)^2/16=16/16#
#(x-1)^2/4^2+(y-3)^2/(16/2)=1#
#(x-1)^2/4^2+(y-3)^2/(2sqrt(2))^2=1#

Here,
the major axis is #a=4#
the minor axis is #b=2sqrt(2)#

Centre is #(1,3)#

End points:
#(5,3)#
#1,3+2sqrt(2)#
#(-3,3)#
#(1,3-2sqrt(2))#

Eccentricity is
#e=sqrt((a^2-b^2)/a^2)#
#a^2=16#
#b^2=8#
#sqrt((a^2-b^2)/b^2)=sqrt((16-8)/16)#
#=sqrt(8/16)#

#e=0.707#