How do you simplify #2( 4x - 5) + 5( - 2x + 3)# as a binomial?

1 Answer
Nov 30, 2017

Answer:

#5-2x# or #5(1-(2x)/5)^1#

Explanation:

#2(4x-5)+5(-2x+3) = 8x-10-10x+15#

#=-2x+5 =5-2x#

If you want to get this in the other binomial form of #a(1+bx)^n# we must divide both sides by 5:
#5(1-(2x)/5)^1#

This can be proved as #(a+bx)^n=a^n(1+(bx)/a)^n#

For #n=1# we get:
#a^n(1+(bx)/a)^1=a^1(1+(bx)/a)=a(1+1((bx)/a))=a(1+(bx)/a)#