How do you simplify #(2x^0y^2)^-3*2yx^3# and write it using only positive exponents? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer LM Oct 26, 2017 #(y^-5x^3)/4# Explanation: #(2x^0y^2)^-3 * 2yx^3# laws of indices: #(a^m)^n = a^(mn)# #a^m * a^n = a^(m+n)# #(x^0)^-3 = x^0 = 1# #(y^2)^-3 = y^-6# #2^-3 = 1/8# #(2x^0y^2)^-3 = y^-6/8# #y^-6/8 * 2yx^3 = 2*y^-5*x^3*1/8# #=(y^-5*x^3)/4# #=(y^-5x^3)/4# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 4851 views around the world You can reuse this answer Creative Commons License